[vc_row][vc_column][title]Data Science Reading List – Intermediate[/title][/vc_column][/vc_row][vc_row][vc_column][vc_empty_space][/vc_column][/vc_row][vc_row][vc_column][callout]These books from my Data Science Reading List are for people who are beyond introductory texts and want more in depth information.[/callout][/vc_column][/vc_row][vc_row][vc_column][vc_empty_space][/vc_column][/vc_row][vc_row][vc_column]
[vc_custom_heading text=”Git Pocket Guide” use_theme_fonts=”yes” link=”url:http%3A%2F%2Famzn.to%2F2iq6QA7||target:%20_blank|rel:nofollow”][/vc_column][/vc_row][vc_row][vc_column width=”1/3″][vc_single_image source=”external_link” onclick=”custom_link” img_link_target=”_blank” custom_src=”https://images-na.ssl-images-amazon.com/images/I/41VaitbtWGL._SX302_BO1,204,203,200_.jpg”%5D%5B/vc_column%5D%5Bvc_column width=”2/3″][vc_column_text]Now that you have your Git reference book, you could probably use this shorter pocket guide for most of your day-to-day work.[/vc_column_text][/vc_column][/vc_row][vc_row][vc_column]
[vc_custom_heading text=”Machine Learning for Hackers” use_theme_fonts=”yes” link=”url:http%3A%2F%2Famzn.to%2F2iy6Awf||target:%20_blank|rel:nofollow”][/vc_column][/vc_row][vc_row][vc_column width=”1/3″][vc_single_image source=”external_link” onclick=”custom_link” img_link_target=”_blank” custom_src=”https://images-na.ssl-images-amazon.com/images/I/51cwV1i8S6L._SX377_BO1,204,203,200_.jpg” link=”http://amzn.to/2iNM2TU”%5D%5B/vc_column%5D%5Bvc_column width=”2/3″][vc_column_text]This book is a really well written and structured introduction to the main machine learning techniques. Every technique is supported by real coded examples on real datasets.
Read this book to whet your appetite for all things machine learning.[/vc_column_text][/vc_column][/vc_row][vc_row][vc_column]
[vc_custom_heading text=”Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython” use_theme_fonts=”yes” link=”url:http%3A%2F%2Famzn.to%2F2hxizs0||target:%20_blank|rel:nofollow”][/vc_column][/vc_row][vc_row][vc_column width=”1/3″][vc_single_image source=”external_link” onclick=”custom_link” img_link_target=”_blank” custom_src=”https://images-na.ssl-images-amazon.com/images/I/515XdK-YtFL._SX379_BO1,204,203,200_.jpg” link=”http://amzn.to/2hxbQ1r”%5D%5B/vc_column%5D%5Bvc_column width=”2/3″][vc_column_text]Sometimes SQL just isn’t enough. SQL is great for heavy lifting data preparation but certain data transformations are difficult in plain old SQL and its ability to summarise data is limited. This book is all about pandas, a Python library for data manipulation, plotting and basic data analysis.
The book is a comprehensive guide to the pandas library and will get you through the most awkward data manipulations you are likely to encounter.
Intermediate knowledge of Python is required.[/vc_column_text][/vc_column][/vc_row][vc_row][vc_column]
[vc_custom_heading text=”Programming Collective Intelligence: Building Smart Web 2.0 Applications” use_theme_fonts=”yes” link=”url:http%3A%2F%2Famzn.to%2F2iy1Syx||target:%20_blank|rel:nofollow”][/vc_column][/vc_row][vc_row][vc_column width=”1/3″][vc_single_image source=”external_link” onclick=”custom_link” img_link_target=”_blank” custom_src=”https://images-na.ssl-images-amazon.com/images/I/51LolW3DugL._SX379_BO1,204,203,200_.jpg” link=”http://amzn.to/2iy1Syx”%5D%5B/vc_column%5D%5Bvc_column width=”2/3″][vc_column_text]This book is a fun, well written and comprehensive introduction to a wide range of common machine learning algorithms. The author takes you through building up each algorithm step by step and sets the context for why the algorithm does what it does. Intermediate knowledge of Python and programming is required to get the most benefit from this book. For a bonus challenge, work through the exercises using your pandas knowledge from Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython![/vc_column_text][/vc_column][/vc_row]