Building a Data Science Capability: Inspirational Keynote at Data Leaders Summit Europe

I’ve just delivered the inspirational keynote at Data Leaders Summit Europe, 2018. Lots of great engagement and feedback. In particular, it seems people liked a clear definition of what data science actually is and the practical steps (miss-steps) I took in building a capability at Sainsbury’s.

You can find all the slides here on SlideshareAs always, if you have questions or want to discuss then please get in touch!

13 Steps to Better Data Science: A Joel Test of Data Science Maturity

Data Science teams have different levels of maturity in terms of their ways of working. In the worst case, every team member works as an individual. Results are poorly explained and impossible to reproduce. In the best case, teams reach full scientific reproducibility with simple conventions and little overhead. This leads to efficiency and confidence in results and minimal friction in productionising models. It is important to be able to measure a team’s maturity so that you can improve your ways of working and so you can attract and retain great talent. This series of questions is a Joel Test of Data Science Maturity. As with Joel’s original test for software development, all questions are a simple Yes/No and a score below 10 is cause for concern. Depressingly, many teams seem to struggle around a 3.

A Joel Test of Data Science Maturity

  1. Are results reproducible?
  2. Do you use source control?
  3. Do you create a data pipeline that you can rebuild with one command?
  4. Do you manage delivery to a schedule?
  5. Do you capture your objectives (scientific hypotheses)?
  6. Do you rebuild pipelines frequently?
  7. Do you track bugs in your models and your pipeline code?
  8. Do you analyse the robustness of your models?
  9. Do you translate model performance to commercial KPIs?
  10. Do new candidates write code at interview?
  11. Do you have access to scalable compute and storage?
  12. Can Data Scientists install libraries and packages without intervention by IT?
  13. Can Data Scientists deploy their models with minimal dependencies on engineering and infrastructure?

 

1. Are results reproducible?

A core aspect of traditional science is that results be reproducible. This is essential when building models of the world that aim to improve our understanding of the world. It is no different for Data Science. And it turns out the reproducibility promotes efficiency. Teams no longer waste time wondering which data led to a particular result, which code led to a particular result and why results might have changed as understanding of the problem improved.

2. Do you use source control?

Building algorithms and data pipelines is complex. Source control lets you track changes to your code, roll back poor changes and try out new ideas without breaking working code.

3. Do you create a data pipeline that you can rebuild with one command?

A version controlled data pipeline allows you to centralise and consolidate your understanding of the data (business and cleaning rules) and your definition of features that feed into an algortihm. If you can rebuild this pipeline with one command then you can quickly iterate as your understanding of the problem evolves and as you inevitably discover issues with the data.

4. Do you manage delivery to a schedule?

Data science needs a schedule to keep it focused. As projects are often open ended and exploratory, you need to have clear checkpoints where you can make a call that perhaps ‘this data is not fit for purpose’ or ‘there is no value in further iterations of model refinement’. Teams that do not deliver to any schedule tend to drift into perfection being the enemy of done.

5. Do you capture your objectives?

Every data science problem is really an optimisation problem and you cannot optimse without an objective. Although it can sometimes feel painful or appear ‘picky’, it is essential that the objective of a project and a model are clearly defined. Increate profit? Increase volume? Increase both with some balance? Get clear and agree with your customer.

6. Do you rebuild pipelines often?

Like traditional software, rebuilding often can highlight integration bugs. In the context of data science integration bugs are effectively data flows through a pipeline. If you do not rebuild often it is possible to introduce cyclic references into your data preparation, lose the logic for creation of a feature and other nasty bugs that cause you to lose that essential reproducibility.

7. Do you track bugs in your model and in your pipeline code?

Data science model development is complex. It has many dependencies. Customer feedback and domain knowledge are incredibly valuable. Make sure you are tracking feedback so mistakes are not repeated and so your models are always improving.

8. Do you analyse the robustness of your models?

No model will work in all scenarios and poor performing models are dangerous. It is important to analyse and understand the conditions under which your model will work and under which it will degrade. This is robustness analysis. Are model outputs biased? Does a model require 6months of training data or 2 weeks? Does a model only perform once it has seen 5 customer journeys? A mature data science team has confidence pushing its models into production because this type of testing has been done in advance.

9. Do you translate model performance to commercial KPIs?

Technical performance metrics are important for you as a technical data scientist. However, to get business buy-in and adoption of your models you need to be able to make your models commercially relevant. That means turning predictions into revenue or cost savings or time savings or whatever the business cares about and whatever will justify further funding of your work.

10. Do new candidates write code at interview?

Data science is full of hype, bluffers and analytics rebranding itself. You want to filter down to the great candidates who understand the scientific method and can apply it to select and tune models. A technical test that involves using data and writing code is the most effective way to do this.

11. Do you have access to scalable compute and storage?

The complex combination of technologies needed for Data SCience often means that organisations struggle to enable their teams with the best technology to do their jobs. If your team does not have access to scalable compute and storage then their success will always be limited. Lack of a central place to store data and workings is a warning sign that Data Science is not taken seriously in an organisation.

12. Can data scientists install libraries and packages without intervention by IT?

If there is one word that summarises the requirements of Data Science it is ‘flexibility’. The nature of the work involves selecting models and tuning them against data. This means being able to quickly install and evaluate lots of model libraries. If a Data Science team needs approval for every library installation and upgrade then its speed of turnaround is going to slow from days to weeks and months.

13. Can Data Scientists deploy their models with minimal dependencies on engineering and infrastructure?

If models cannot be put into use they are of little value beyond curiousities. But deploying a model involves training on reproducible data, monitoring of decisions and performance and A/B testing of new releases. Delays in deployment mean models go out of date or competitive advantage is lost. The best organisations have platforms that allow model deployment to happen quickly, driven by Data Scientists.

So how do you score a 13/13?

How would your team score on a Joel Test of Data Science Maturity? This is where Guerrilla Analytics can help. Guerrilla Analytics provides guiding principles and conventions for promoting data provenance and reproducibiltiy in Data Science and Analytics work. There are guidelines on how to structure projects at every stage of the life cycle and how to consolidate knowledge in flexible data pipelines. You will also learn how to leverage techniques and tools from software engineering such as testing and source control.

10 Data Science Capabilities Your Team Needs (and the Tools to Support Them)

People want some guidance in what can be a very overwhelming and fast moving field. Managers want to know what to buy and where to invest training. Junior data scientists, students, dev ops engineers and system administrators want to know what to learn. I will focus on the important capabilities for a Data Science team and the tools I have found useful for enabling those capabilities.

I’ve recently had several people ask me about tools for Data Science both online and at conference talks. This post lists some of the tools I use and the capabilities they provide.

When writing Guerrilla Analytics: A Practical Approach to Working with Data I deliberately avoided mention of tools. People can be dogmatic about tools and I thought this would be a distraction from the book’s core message around principles for doing effective Data Science in dynamic real-world projects.

That said, people do want some guidance in what can be a very overwhelming and fast moving field. Managers want to know what to buy and where to invest training. Junior data scientists, students, dev ops engineers and system administrators want to know what to learn. I will focus on the important capabilities for a Data Science team and the tools I have found useful for enabling those capabilities.

1. Version control with Git and git-flow

Capability: Typically you will go through many iterations of your code and the work products your code produces. It quickly becomes impossible to track changes and reproduce earlier work without some code version control tool. This is only exacerbated when your team size is >1.

Tool: Git is a great version control system and the effort to learn its command line interface is a very worthwhile investment.

Git is incredibly flexible. However this can lead to confusion and inconsistency in how it is applied. Git-flow is a set of scripts that automate much of what you will need to do in Git subject to a particular convention that happens to be very helpful for Data Science.

2. Wrangling and persisting data with PostgreSQL

Capability:  Even if your data is small enough to fit in memory, reproducing work will involve running all those scripts into memory before you can pick up where you left off. Other team members have to do the same. This is painful and inefficient. You therefore need to persist your work (raw data, intermediate datasets and work products).

Tool: A database gives you a way to persist your workings and intermediate datasets as well as share with team members. Pick a database the is performant and flexible. I use PostgreSQL. It has an amazing set of features and this flexibility is what you want when doing Data Science.

3. Wrangling and visualizing data with PandasMatplotlib and Seaborn

Capability: Getting your head around your data and preparing it for a variety of algorithms is probably the most time-consuming and important part of the Data Science life cycle. Some preparations are easier done outside of many databases e.g. some natural language processing. Visualizing the data is really important here too.

Tool: Pick a programming language that has great data reshaping and visualization capabilities. If you work in Python, Pandas is a powerful set of data structures and algorithms for wrangling. Seaborn and Matplotlib are good places to start for visualization. And don’t waste time trying to get all these things to work together. Just use Continuum’s excellent distribution Anaconda.

Read: Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython

4. Documentation with Markdown

Capability: Data Science is useless without communication (to your customer and within your team). You could just write a report as a Word document. There’s nothing wrong with that and it’s a format your business customers will expect. However, it would be great to have a documentation that is easy to version control and can be kept close to your project code.

Tool: Markdown is a nice platform-neutral way to document your project. Because it’s plain text it’s easy to version control (see above). And if your report isn’t too complicated you can convert it to Word from Markdown. Win.

5. Fast file manipulation, cleaning, and summarising at the command line

Capability: You get hundreds of data files. You get huge files in strange formats with broken delimiters. You want to chop these up, patch them together, change their encodings, unravel XML etc etc. No, trying to open the file in a text editor or spreadsheet is not the answer.

Tool: This is best done at a powerful command line. Linux is worth learning.

Read: Data Science at the Command Line: Facing the Future with Time-Tested Tools

6. Story telling with Jupyter Notebooks

Capability: Data Science is difficult to communicate. It’s often a slightly meandering journey with dead ends, back-tracking, unexpected insights leading to new research avenues etc. When updating your customer, you need to walk them through some of this journey using narratives interleaved with graphics and tabular data. Code files won’t do. Duplicating into Powerpoint is a lot of extra work for a quick interim update.

Tool: Jupyter allows all of the above in presentation quality. The close interleaving of analysis and documentation helps other team members join a project. And it reduces duplication when you decide it’s time to stop coding and start updating your customer.

7. Build automation with Luigi

Capability: eventually, your understanding and your code start to consolidate. There are some core datasets. They go through some agreed preparatory steps. There are some reports and algorithm datasets that you want to lock down and reproduce several times during the project. Manually running all those code files is a pain.

Tool: build automation tools allow you to automate tasks such as executing code files, creating documentation, importing and exporting data etc etc. I’ve used command line scripts (see above) and software build tools like Ant for this automation. More sophisticated tools like Luigi are now reaching a level of maturity where you could consider them for your team too.

8. Workflow tracking with JIRA

Capability: what the hell is everybody doing? Where did that data come from? Where is the conversation with the system SME that led to that business rule? Where is the deliverable from 2 weeks ago and who sent it to which customer?

Tool: workflow tracking tools like JIRA help answer all the above questions. Look for a tool that is customizable as Data Science doesn’t need all the detail of a large scale software development project. Do make sure you track where your data is coming from and what deliverables are going out the door (see Guerrilla Analytics).

9. Packaging it all up with Vagrant

Capability: the diverse nature of Data Science activities leads to a correspondingly diverse set of tools as you’ve seen above. When you get things working, you would rather not break them and you would rather not force every team member to go through the same painful installations and configurations and risk inconsistency.

Tool: Vagrant and other ‘dev ops’ tools allow you to define your tech setups and their configuration in program code. What does that mean? It means that you can build your entire technology stack and configure it by running some code. It also means that the installation of all your tools and their configuration can be version controlled. As your technology stack evolves, update your code and issue a new release to your team. If you trash your technology or need to move to other servers, everything you need to reproduce your environment has been captured and you should be back up and running in minutes.

Read: Vagrant: Up and Running

10. Putting it all together – Operations with Guerrilla Analytics

I’ve covered a lot here. How do you put this all together without choking a team in conventions, rules, tools etc? How do you reduce Data Science chaos and continue to deliver iteratively and at pace? That’s where Guerrilla Analytics can help.

Have a read around this blog, check out the book and get in touch with any questions!

10 Data Science Capabilities (and supporting tools)

People want some guidance in what can be a very overwhelming and fast moving field. Managers want to know what to buy and where to invest training. Junior data scientists, students, dev ops engineers and system administrators want to know what to learn. I will focus on the important capabilities for a Data Science team and the tools I have found useful for enabling those capabilities.

I’ve recently had several people ask me about Data Science capabilities both online and at conference talks. This post lists some of the tools I use and the capabilities they provide.

When writing Guerrilla Analytics: A Practical Approach to Working with Data I deliberately avoided mention of tools. People can be dogmatic about tools and I thought this would be a distraction from the book’s core message around principles for doing effective Data Science in dynamic real-world projects.

That said, people do want some guidance in what can be a very overwhelming and fast moving field. Managers want to know what to buy and where to invest training. Junior data scientists, students, dev ops engineers and system administrators want to know what to learn. I will focus on the important capabilities for a Data Science team and the tools I have found useful for enabling those capabilities.

1. Version control with Git and git-flow

Capability: Typically you will go through many iterations of your code and the work products your code produces. It quickly becomes impossible to track changes and reproduce earlier work without some code version control tool. This is only exacerbated when your team size is >1.

Tool: Git is a great version control system and the effort to learn its command line interface is a very worthwhile investment.

Git is incredibly flexible. However this can lead to confusion and inconsistency in how it is applied. Git-flow is a set of scripts that automate much of what you will need to do in Git subject to a particular convention that happens to be very helpful for Data Science.

2. Wrangling and persisting data with PostgreSQL

Capability:  Even if your data is small enough to fit in memory, reproducing work will involve running all those scripts into memory before you can pick up where you left off. Other team members have to do the same. This is painful and inefficient. You therefore need to persist your work (raw data, intermediate datasets and work products).

Tool: A database gives you a way to persist your workings and intermediate datasets as well as share with team members. Pick a database the is performant and flexible. I use PostgreSQL. It has an amazing set of features and this flexibility is what you want when doing Data Science.

3. Wrangling and visualizing data with PandasMatplotlib and Seaborn

Capability: Getting your head around your data and preparing it for a variety of algorithms is probably the most time-consuming and important part of the Data Science life cycle. Some preparations are easier done outside of many databases e.g. some natural language processing. Visualizing the data is really important here too.

Tool: Pick a programming language that has great data reshaping and visualization capabilities. If you work in Python, Pandas is a powerful set of data structures and algorithms for wrangling. Seaborn and Matplotlib are good places to start for visualization. And don’t waste time trying to get all these things to work together. Just use Continuum’s excellent distribution Anaconda.

Read: Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython

4. Documentation with Markdown

Capability: Data Science is useless without communication (to your customer and within your team). You could just write a report as a Word document. There’s nothing wrong with that and it’s a format your business customers will expect. However, it would be great to have a documentation that is easy to version control and can be kept close to your project code.

Tool: Markdown is a nice platform-neutral way to document your project. Because it’s plain text it’s easy to version control (see above). And if your report isn’t too complicated you can convert it to Word from Markdown. Win.

5. Fast file manipulation, cleaning, and summarising at the command line

Capability: You get hundreds of data files. You get huge files in strange formats with broken delimiters. You want to chop these up, patch them together, change their encodings, unravel XML etc etc. No, trying to open the file in a text editor or spreadsheet is not the answer.

Tool: This is best done at a powerful command line. Linux is worth learning.

Read: Data Science at the Command Line: Facing the Future with Time-Tested Tools

6. Story telling with Jupyter Notebooks

Capability: Data Science is difficult to communicate. It’s often a slightly meandering journey with dead ends, back-tracking, unexpected insights leading to new research avenues etc. When updating your customer, you need to walk them through some of this journey using narratives interleaved with graphics and tabular data. Code files won’t do. Duplicating into Powerpoint is a lot of extra work for a quick interim update.

Tool: Jupyter allows all of the above in presentation quality. The close interleaving of analysis and documentation helps other team members join a project. And it reduces duplication when you decide it’s time to stop coding and start updating your customer.

7. Build automation with Luigi

Capability: eventually, your understanding and your code start to consolidate. There are some core datasets. They go through some agreed preparatory steps. There are some reports and algorithm datasets that you want to lock down and reproduce several times during the project. Manually running all those code files is a pain.

Tool: build automation tools allow you to automate tasks such as executing code files, creating documentation, importing and exporting data etc etc. I’ve used command line scripts (see above) and software build tools like Ant for this automation. More sophisticated tools like Luigi are now reaching a level of maturity where you could consider them for your team too.

8. Workflow tracking with JIRA

Capability: what the hell is everybody doing? Where did that data come from? Where is the conversation with the system SME that led to that business rule? Where is the deliverable from 2 weeks ago and who sent it to which customer?

Tool: workflow tracking tools like JIRA help answer all the above questions. Look for a tool that is customizable as Data Science doesn’t need all the detail of a large scale software development project. Do make sure you track where your data is coming from and what deliverables are going out the door (see Guerrilla Analytics).

9. Packaging it all up with Vagrant

Capability: the diverse nature of Data Science activities leads to a correspondingly diverse set of tools as you’ve seen above. When you get things working, you would rather not break them and you would rather not force every team member to go through the same painful installations and configurations and risk inconsistency.

Tool: Vagrant and other ‘dev ops’ tools allow you to define your tech setups and their configuration in program code. What does that mean? It means that you can build your entire technology stack and configure it by running some code. It also means that the installation of all your tools and their configuration can be version controlled. As your technology stack evolves, update your code and issue a new release to your team. If you trash your technology or need to move to other servers, everything you need to reproduce your environment has been captured and you should be back up and running in minutes.

Read: Vagrant: Up and Running

10. Putting your Data Science capabilities together – Operations with Guerrilla Analytics

I’ve covered a lot here. How do you put this all together without choking a team in conventions, rules, tools etc? How do you reduce Data Science chaos and continue to deliver iteratively and at pace? That’s where Guerrilla Analytics can help.

Have a read around this blog, check out the book and start building your Data Science Capabilities!

Guerrilla Analytics: 7 Principles for Agile Analytics at PAW London 2015

I was invited to speak at Predictive Analytics World 2015 in London on October 28th 2015.

My talk covered how the 7 Guerrilla Analytics Principles are the foundation for doing Agile Data Science. With a Data Science Operating Model that follows these principles, your team always know where their data came from, who changed it and why and can explain any of the highly iterative explorations and analyses their customers require.

You can find the slides below and at Slideshare. As always, feedback and questions are welcome. Enjoy!

 

Data Science Patterns: Preparing Data for Agile Data Science

Are you a data scientist working on a project with constantly changing requirements, flawed changing data and other disruptions? Guerrilla Analytics can help.

The key to a high performing Guerrilla Analytics team is its ability to recognise common data preparation patterns and quickly implement them in flexible, defensive data sets.

After this webinar, you’ll be able to get your team off the ground fast and begin demonstrating value to your stakeholders.

You will learn about:
* Guerrilla Analytics: a brief introduction to what it is and why you need it for your agile data science ambitions
* Data Science Patterns: what they are and how they enable agile data science
* Case study: a walk through of some common patterns in use inreal projects

I recently gave a webinar on Data Science Patterns. The slides are here.

Data Science Patterns, as with Software Engineering Patterns, are ‘common solutions to recurring problems’. I was inspired to put this webinar together based on a few things.

  • I build Data Science teams. Repeatedly, you find teams working inconsistently in terms of the data preparation approaches, structures and conventions they use. Patterns help resolve this problem. Without patterns, you end up with code maintenance challenges, difficulty in supporting junior team members and all round team inefficiency due to having a completely ad-hoc approach to data preparation.
  • I read a recent paper ‘Tidy Data’ by Hadley Wickham in the Journal of Statistical Software http://vita.had.co.nz/papers/tidy-data.pdf. This paper gives an excellent clear description of what ‘tidy data’ is – the data format used by most Data Science algorithms and visualizations. While there isn’t anything new here if you have a computer science background, Wickham’s paper is an easy read and has some really clear worked examples.
  • My book, Guerrilla Analytics (here for USA or here for UK), has an entire appendix on data manipulation patterns and I wanted to share some of that thinking with the Data Science community.

I hope you enjoy the webinar and find it useful. You can hear the recording here. Do get in touch with your thoughts and comments as I think Data Science patterns is a huge area of potential improvement in the maturity of Data Science as a field.

How Do I Avoid Bias In My Data Science Work?

The danger of bias hasn’t been given enough consideration in Data Science. Bias is anything that would cause us to skew our conclusions and not treat results and evidence objectively. Bias is sometimes unavoidable, sometimes accidental and unfortunately sometimes deliberate. While bias is well recognised as a danger in mainstream science, I think Data Science could benefit from improving in this area. In this post I categorise the types of bias encountered in typical Data Science work. I have gathered these from recent blog posts [1], [2], [3] and a discussion in my PhD thesis [4]. I also show how to reduce bias using some of the principles you can learn about in Guerrilla Analytics: A Practical Approach to Working with Data.

Comparing apples and bananas on a scale

The danger of bias hasn’t been given enough consideration in Data Science. Bias is anything that would cause us to skew our conclusions and not treat results and evidence objectively. It is sometimes unavoidable, sometimes accidental and unfortunately sometimes deliberate. While bias is well recognised as a danger in mainstream science, I think Data Science could benefit from improving in this area.

In this post I categorise the types of bias encountered in typical Data Science work. I have gathered these from recent blog posts [1], [2], [3] and a discussion in my PhD thesis [4]. I also show how to reduce bias using some of the principles you can learn about in Guerrilla Analytics: A Practical Approach to Working with Data.

8 Types of Bias in Data Science

The first step is to be aware of the types of bias you may encounter.

  1. Confirmation bias. People are less critical of Data Science that supports their prior beliefs rather than challenges their convictions.
    • This happens when results that go against the grain are rejected in favour of results that promote ‘business as usual’. Was the latest quarterly marketing campaign really successful across the board or just for one part of the division?
  2. Rescue bias. This bias involves selectively finding faults in an experiment that contradicts expectations. It is generally a deliberate attempt to evade and undermine evidence.
    • You may fall for this bias when your project results are disappointing. Perhaps your algorithm can’t classify well enough. Perhaps the data is too sparse. The Data Scientist tries to imply that results would have been different had the experiment been different. Doing this is effectively drawing conclusions without data and without experiments.
  3. ‘Time will tell’ bias. Taking time to gather more evidence should increase our confidence in a result. This bias affects the amount of such evidence that is deemed necessary to accept the results.
    • You may encounter this bias when a project is under pressure to plough ahead rather than waiting for more data and more confident Data Science. Should you draw conclusions based on one store or wait until you have more data from a wide variety of stores and several seasons?
  4. Orientation bias. This reflects a phenomenon of experimental and recording error being in the direction that supports the hypothesis.
    • You may encounter this bias when your work is needed to support a business decision that has already been made. This arises in the pharmaceuticals industry, for example, where trials favour the new pharmaceutical drugs.
  5. Cognitive bias: This is the tendency to make skewed decisions based on pre-existing factors rather than on the data and other hard evidence.
    • This might be encountered where the Data Scientist has to argue against a ‘hunch’ from ‘experience’ that is not supported by hard data.
  6. Selection bias: This is the tendency to skew your choice of data sources to those that may be most available, convenient and cost-effective for your purposes.
    • You will encounter this bias when you have to ‘demonstrate value’ on a project that has not been properly planned. The temptation is to do ‘best endeavors’ with the data available.
  7. Sampling bias: This is the tendency to skew the sampling of data sets toward subgroups of the population.
    • An oft-quoted example here is the use of Twitter data to make broad inferences about the population. It turns out that the Twitter users sample is biased towards certain locations, certain incomes and education levels etc.
  8. Modelling bias: This is the tendency to skew Data Science models by starting with a biased set of assumptions about the problem. This leads to selection of the wrong variables, the wrong data, the wrong algorithms and the wrong metrics.

Reducing Bias

So what can you do to counter these biases in your work?

The first step is awareness and hopefully the above list will help you and your colleagues. If you know about bias, you can remain alert to it in your own work and that of others. Be critical and always challenge assumptions and designs.

The next best thing is to do what scientists do and make your work as reproducible and transparent as possible.

  • Track your data sources and profile your raw data as much as possible. Look at direct metrics from your data such as distributions and ranges. But also look at the qualitative information about the data. Where did it come from? How representative is this?
  • Make sure your data transformations and their influence on your populations can be clearly summarised. Are you filtering data? Why and so what? How are you calculating your variables and have you evaluated alternatives? Where is the evidence for your decision?
  • Track all your work products and data understanding as they evolve with the project. This allows you to look back at the exploration routes you discarded or didn’t have time to pursue.

Conclusion

Bias is sometimes unavoidable because of funding, politics or resources constraints. However that does not mean you can ignore bias. Recognising the types of bias, and understanding their impact on your conclusions will make you a better Data Scientist and improve the quality of your conclusions.

You can read more about how to do reproducible, testable Data Science that helps defend against bias in my book Guerrilla Analytics: A Practical Approach to Working with Data. Can you think of any other biases? Please get in touch!

References

  1. Data Scientist: Bias, Backlash and Brutal Self-Criticism, James Kobielus, MAY 16, 2013, http://www.ibmbigdatahub.com/blog/data-scientist-bias-backlash-and-brutal-self-criticism
  2. The Hidden Biases in Big Data, Kate Crawford APRIL 01, 2013, https://hbr.org/2013/04/the-hidden-biases-in-big-data
  3. 7 Common Biases That Skew Big Data Results, 9th July 2015 Lisa Morgan, http://www.informationweek.com/big-data/big-data-analytics/7-common-biases-that-skew-big-data-results/d/d-id/1321211
  4. Design of Experiments for the Tuning of Optimisation Algorithms, 2004, University of York, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.332.9333&rep=rep1&type=pdf